
M4 Macros for Electric Circuit Diagrams in LATEX Documents

Dwight Aplevich

Version 5.82

Contents

1 Introduction . 2

2 Using the macros . 2
2.1 Quick start . 2

2.1.1 Processing with gpic . 3
2.1.2 Processing with dpic . 3
2.1.3 Simplifications . 4

3 Pic essentials . 4
3.1 Manuals . 4
3.2 The linear objects: line, arrow, spline, arc . 5
3.3 The planar objects: box, circle, ellipse, and text 6
3.4 Compound objects . 6
3.5 Other language elements . 7

4 Two-terminal elements . 7
4.1 Circuit and element basics . 7
4.2 The two-terminal elements . 9
4.3 Branch-current arrows . 11
4.4 Labels . 11

5 Other circuit elements . 12

6 Directions and macro-level looping . 17

7 Logic gates . 18

8 Element and diagram scaling . 20
8.1 Circuit scaling . 20
8.2 Pic scaling . 20

9 Writing macros . 21

10 Interaction with LATEX . 22

11 PSTricks tricks . 24

12 Web documents, pdf, and alternative output formats . 24

13 Developer’s notes . 25

14 Bugs . 26

15 List of macros . 28

1

1 Introduction

Before every conference, I find Ph.D.s in on weekends running back and forth from
their offices to the printer. It appears that people who are unable to execute pretty
pictures with pen and paper find it gratifying to try with a computer [9].

This document describes a set of macros, written in the m4 macro language [7], for producing
electric circuits and other diagrams in LATEX documents. The macros evaluate to drawing commands
in pic, a line-drawing language [8] that is readily available and quite simple to learn. The result
is a system with the advantages and disadvantages of TEX itself, since it is macro-based and non-
wysiwyg, and since it uses ordinary character input. The book from which the above quotation is
taken correctly points out that the payoff can be in quality of diagrams at the price of the time
spent in learning how to draw them.

A collection of basic components and conventions for their internal structure are described. For
particular drawings it is often convenient to customize elements or to package combinations of them,
so macros such as these are only a starting point. The IEEE standard [6] has been followed most
of the time. The macros described here make extensive use of the characteristics of pic and have
been designed, where possible, to be an extension of the language.

2 Using the macros

The diagram source file is preprocessed as illustrated in Figure 1. The source, together with the
predefined macros, is first passed through m4, and then through a pic interpreter that produces a
.tex file to be inserted into the .tex source using the \input command.

.m4
diagram

.m4
macros

m4
pic

interpreter

.tex
files

LATEX .dvi
file

Figure 1: Inclusion of figures and macros in the LATEX document.

The .tex file contains, for example, tpic specials, LATEX graphics, or other graphics commands,
such as for PSTricks [14], which LATEX will convert or include in a .dvi file. The .dvi file is then
to be viewed or printed by a driver capable of interpreting any \special commands inserted by
the pic processor. Variations of these steps are possible, as described in Section 12.

To convert pic to TeX input one can use [3] gpic -t with a printer driver that understands
tpic specials, typically [11] dvips. In some installations, gpic is simply named pic, but make
sure that GNU pic [3] is being invoked rather than the older Unix pic. An alternative is dpic,
as described later in this document. Pic processors contain basic macro facilities, so some of the
concepts applied here require only a pic processor.

With judicious use of macros the features of both m4 and pic can be exploited. The fastidious
reader might observe that there are 3 languages being scrambled: m4, pic, and the tpic, tex or
other output, not to mention the meta-language of the macros, and that this mixture might be a
problem, but experience implies otherwise.

2.1 Quick start

The contents of file quick.m4 and resulting diagram are shown in Figure 2 to illustrate the language,
to show several ways for placing circuit elements, and to provide information sufficient for producing
basic labeled circuits.

2

.PS # Pic input begins with .PS

cct_init # Set defaults

elen = 0.75 # Variables are allowed; default units are inches

Origin: Here # Position names are capitalized

source(up_ elen); llabel(-,v_s,+)

resistor(right_ elen); rlabel(,R,)

dot

{ # Save current position and direction

capacitor(down_ to (Here,Origin)) #(Here,Origin) = (Here.x,Origin.y)

rlabel(+,v,-); llabel(,C,)

dot

} # Restore position and direction

line right_ elen*2/3

inductor(down_ Here.y-Origin.y); rlabel(,L,); b_current(i)

line to Origin

.PE # Pic input ends

−
vs

+ R
+

v− C L

i

Figure 2: The file quick.m4 and resulting diagram.

To process the file, make sure that the libraries libcct.m4 and libgen.m4 are accessible. Verify
that m4 is installed. Now there are at least two possibilities, as follows, with slightly simpler usage
to be given in Section 2.1.3.

2.1.1 Processing with gpic

If your printer driver understands tpic specials and you are using gpic (on some systems the gpic
command is pic), do the following. Type

m4 <path>libcct.m4 quick.m4 > quick.pic
gpic -t quick.pic > quick.tex

where <path> is the path to the libcct.m4 file. Add the following to your main LATEX source file:

\begin{figure}[hbt]
\input quick
\centerline{\box\graph}
\caption{Customized caption for the figure.}
\label{Symbolic_label}
\end{figure}

2.1.2 Processing with dpic

If you are using dpic with the PSTricks macros, the commands are

m4 <path>pstricks.m4 <path>libcct.m4 quick.m4 > quick.pic
dpic -p quick.pic > quick.tex

and the main LATEX source file should have the statement \usepackage{pstricks} in the header.
The figure inclusion statements are

\begin{figure}[hbt]
\centering
\input quick
\caption{Customized caption for the figure.}
\label{Symbolic_label}

\end{figure}

In both cases the essential line is \input quick, which inserts the previously created file
quick.tex. Then LATEX the document, convert to postscript typically using dvips, and print
the result or view it using Ghostview.

3

2.1.3 Simplifications

If appropriate include() statements are placed at the top of the file quick.m4, then the m4
commands illustrated above can be shortened to

m4 quick.m4 > quick.pic
For example, the following two lines can be inserted before the line containing .PS:

include(<path>pstricks.m4)
include(<path>libcct.m4)

where <path> is the path to the folder containing the libraries. Only the second line is necessary
if gpic is used or if the libraries were installed so that PSTricks is assumed by default. On some
systems, setting the environment variable M4PATH to the library folder allows the above lines to be
simplified to

include(pstricks.m4)
include(libcct.m4)
In the absence of a need to examine the file quick.pic, the commands for producing the .tex

file can be reduced to
m4 quick.m4 | dpic -p > quick.tex
When many files are to be processed, then a facility such as Unix make, which is also available

in several PC versions, can be employed to automate the manual commands given above. On
systems without such a facility, a scripting language can be used or you can put several diagrams
into a single source file so that they get processed together. Put each diagram in the body of a
LATEX macro, as shown:

\newcommand{\diaA}{%
.PS
drawing commands
.PE
\box\graph }% \box\graph not required for dpic
\newcommand{\diaB}{%
.PS
drawing commands
.PE
\box\graph }% \box\graph not required for dpic
Process the file using m4 and dpic or gpic to produce a .tex file, insert this into the LATEX

source using \input, and invoke the macros at the appropriate places.

3 Pic essentials

Pic source is a sequence of lines in a file. The first line of a diagram begins with .PS with optional
following arguments, and the last line is normally .PE. Lines outside of these pass through the pic
processor unchanged.

The visible objects can be divided conveniently into two classes, the linear objects line, arrow,
spline, arc, and the planar objects box, circle, ellipse.

The object move is linear but draws nothing. A composite object, or block, is planar and
consists of a pair of square brackets enclosing other objects, as described in Section 3.4. Objects
can be placed using absolute coordinates or relative to other objects.

Pic allows the definition of real-valued variables, which are alphameric names beginning with
lower-case letters, and computations using them. Objects or locations on the diagram can be given
symbolic names beginning with an upper-case first letter.

3.1 Manuals

At the time of writing, the classic pic manual [8] can be obtained from URL:
ftp://cm.bell-labs.com/cm/cs/cstr/116.ps.gz
A more complete manual [10] is included in the GNU groff package. Compressed postscript

versions of both are available, at least temporarily, with these circuit files.

4

In both of the above manuals, explicit use of *roff string and font constructs should be replaced
by their LATEX equivalents as necessary. Further explanation is available, for example, from the
gpic ‘man’ page, part of the GNU groff package.

Examples of use of the circuit macros in an electronics course are available on the web [2].
For a discussion of “little languages” for document production, and of pic in particular, see

Chapter 9 of [1]. Chapter 1 of [4] also contains a brief discussion of this and other languages.

3.2 The linear objects: line, arrow, spline, arc

A line can be drawn as follows:
line from position to position

where position is defined below or
line direction distance

where direction is one of up, down, left, right. When used with the m4 macros described here,
it is preferable to add an underscore: up , down , left , right . The distance is a number or
expression, and the units are inches, but the assignment

scale = 25.4
has the effect of changing the units to millimetres, as described in Section 8.

Lines can also be drawn to any distance in any direction. The example,
line up 3/sqrt(2) right 3/sqrt(2)

draws a line 3 units long from the current location, at a 45◦ angle above horizontal.
The construction
line from A to B chop x

truncates the line at each end by x or, if x is omitted, by the current circle radius, which is convenent
when A and B are symbolic names for circular graph nodes, for example. Otherwise

line from A to B chop x chop y
truncates the line ends by x and and y, which may be negative.

The above methods of specifying the direction and length of a line are referred to as a linespec.
Lines can be concatenated. For example, to draw a triangle:
line up sqrt(3) right 1 then down sqrt(3) right 1 then left 2
A position can be defined by a coordinate pair, e.g. 3,2.5, more generally using parentheses

by (expression, expression), or by the construction (position, position), the latter taking the x-
coordinate from the first position and the y-coordinate from the second. A position can be given
a symbolic name beginning with an upper-case letter, e.g. Top: (0.5,4.5). Such a definition
does not affect the calculated figure boundaries. The current position Here is always defined. The
coordinates of a position are accessible, e.g. Top.x and Top.y can be used in expressions. The
center, start, and end of linear objects are valid positions, as shown in the following example, which
also illustrates how to refer to a previously-drawn element if it has not been given a name:

line from last line.start to 2nd last arrow.end then to 3rd line.center
Objects can be named (using a name commencing with an upper-case letter), for example:
Bus23: line up right

after which, positions associated with the object can be referenced using the name; for example:
arc cw from Bus23.start to Bus23.end with .center at Bus23.center
An arc is drawn by specifying its rotation, starting point, end point, and center, but sensible

defaults are assumed if any of these are omitted. Note that
arc cw from Bus23.start to Bus23.end

does not define the arc uniquely; there are two arcs that satisfy this specification. This distribution
includes the m4 macros

arcr(position, radius, start radians, end radians)
arcd(position, radius, start degrees, end degrees)
arca(chord linespec, ccw|cw, radius, modifiers)

to draw uniquely defined arcs. For example,
arcd((1,1),2,0,-90) -> dashed cw

draws a clockwise arc with centre at (1, 1), radius 2, from (3, 1) to (1,−1), and
arca(from (1,1) to (2,2),,1,->)

5

draws an acute-angled arc with arrowhead on the chord defined by the first argument.
The linear objects can be given arrowheads at the start, end, or both ends, for example:
line dashed <- right 0.5
arc <-> height 0.06 width 0.03 ccw from Here to Here+(0.5,0) \

with .center at Here+(0.25,0)
spline -> right 0.5 then down 0.2 left 0.3 then right 0.4
The arrowheads on the arc above have had their shape adjusted using the height and width

parameters.
Finally, lines can be specified as dotted, dashed, or invisible, as in the above example.

3.3 The planar objects: box, circle, ellipse, and text

The planar objects are drawn by specifying the width, height, and position of the center, thus:
A: box ht 0.6 wid 0.8 at (1,1)

after which, in this example, the position A.center is a defined position, and can be written
simply as A. In addition, the compass corners A.n, A.s, A.e, A.w, A.ne, A.se, A.sw, A.nw are
automatically defined, as are the dimensions A.height and A.width. For example, two touching
circles can be drawn as shown:

circle radius 0.2
circle diameter (last circle.width * 1.2) with .sw at last circle.ne
The planar objects can be filled with gray by the fill number parameter, where number = 0

means black, and number = 1 means white. Omitting the number produces a medium gray. Thus,
for example,

box dashed fill
produces a gray dashed box.

Basic colours for lines and fills are provided by gpic and dpic, but more elaborate line and fill
styles can be incorporated, depending on the printing device, by inserting \special commands or
other lines beginning with a backslash in the drawing code. In fact, arbitrary lines can be inserted
into the output using

command "string"
where string is the line to be output.

Arbitrary text strings, typically meant to be typeset by LATEX, are delimited by double-quote
characters and occur in two ways. The first way is illustrated by

"\large Resonances of $C {20}H {42}$" wid x ht y at position
which writes the typeset result, like a box, at position and tells pic its size. The default size is
defined by pic parameters textwid and textht if it is not specified as above. The exact typeset
size of formatted text can be obtained as described in Section 10. The second way associates the
string with an object, e.g.,

ellipse "\bf Stop"
writes Stop at the centre of the ellipse. The C-like pic function sprintf("format string",numerical
arguments) is equivalent to a string.

3.4 Compound objects

A group of statements enclosed in square brackets is a compound object. Such an object is placed
by default as if it were a box, but it can also be placed by specifying the final position of an internal
location. Consider the example code fragment shown:
Ands: [right_

And1: AND_gate
And2: AND_gate at And1 - (0,And1.ht*3/2)
line from And1.Out right_ And1.wid/3 then down_ (And1.y-And2.y)/2 then \
left_ And1.wid*5/3 then to And2.In1-(And1.wid/3,0) then to And2.In1

. . .
] with .And2.In1 at (K.x,IC5.Pin9.y)

6

The two gate macros evaluate to compound objects containing Out, In1, and other locations.
The final positions of all objects between the square brackets are specified in the last line by
specifying the position of In1 of gate And2.

3.5 Other language elements

All objects have default sizes, directions, and other characteristics, so part of the specification of
an object can sometimes be profitably omitted.

Another possibility for defining positions is
expression of the way between position and position

which is abbreviated as
expression < position , position >

but care has to be used in processing the latter construction with m4, since the comma may have
to be put within quotes, ‘,’ to distinguish it from the m4 argument separator.

Positions can be calculated using expressions containing variables. The scope of a position is
the current block. Thus, for example,

theta = atan2(B.y-A.y,B.x-A.x)
line to Here+(3*cos(theta),3*sin(theta)).
Expressions are the usual algebraic combinations of primary quantities: constants, environmen-

tal parameters such as scale, variables, horizontal or vertical coordinates, using the constructs
position.x or position.y, dimensions of pic objects, e.g. last circle.rad.

The logical operators ==, !=, <=, >=, >, < apply to expressions, and strings can be tested
for equality or inequality. A modest selection of numerical functions is also provided: the single-
argument functions sin, cos, log, exp, sqrt, int, where log and exp are base-10, the two-
argument functions atan2, max, min, and the random-number generator rand(). Other functions
are also provided using macros.

A pic manual should be consulted for details, more examples, and other facilities, such as the
branching facility

if expression then { anything } else { anything },
the looping facility

for variable = expression to expression by expression do { anything },
operating-system commands, pic macros, and external file inclusion.

4 Two-terminal elements

There is a fundamental difference between two-terminal elements, which are drawn as directed linear
objects, and other elements, which are compound objects as described in Section 3.4. The two-
terminal element macros follow a set of conventions described in this section, and other elements
will be described in Section 5.

4.1 Circuit and element basics

First, the arguments of all drawing macros have default values, so that only arguments that differ
from these values need be specified. The arguments are given in Section 15.

Consider the resistor shown in Figure 3, which also serves as an example of pic command; the
first part of the source is as follows:

.PS

cct_init

linewid = 2.0

linethick_(2.0)

R1: resistor

The lines of Figure 3 and the remaining source lines of the file are explained below:

7

last []R1.start R1.endR1.centre

elen
dimen

Figure 3: Resistor named R1, showing the size parameters, enclosing block, and predefined positions.

• The first line invokes an almost-empty macro that initializes local variables needed by some
circuit-element macros. This macro can be customized to set line thicknesses, maximum page
sizes, scale parameters, or other global quantities as desired.

• The body dimensions of two-terminal elements are multiples of the macro dimen , which
evaluates by default to linewid, the pic environment variable with default value 0.5 in. The
default length of an element is elen , which is dimen *3/2. For resistors, the length of the
body is dimen /2, and the width is dimen /6. All of these values can be customized. Element
scaling is discussed further in Section 8.

• The macro linethick sets the thickness of subsequent lines (to 2.0 pt in the example).

• The two-terminal element macros expand to sequences of drawing commands that begin with
‘line invis linespec’, where linespec is the first argument of the macro if it is non-blank,
otherwise by default the line is drawn a distance elen in the current direction, which is to
the right by default. The invisible line is first drawn, then the element is drawn on top of the
line. The element—rather the initially-drawn invisible line—can be given a name, R1 in the
example, so that positions R1.start, R1.centre, and R1.end are defined as shown.

• The element body is enclosed by a block, which later can be used to place labels around
the element. The block corresponds to an invisible rectangle with horizontal top and bottom
lines, regardless of the direction in which the element is drawn. In the diagram a dotted box
has been drawn to show the block boundaries.

• The last sub-element, identical to the first in each two-terminal element, is an invisible line
that can be referenced later to place labels or other elements. This might be over-kill. If you
create your own macros you might choose simplicity over generality, and only include visible
lines.

To produce Figure 3, the following embellishments were included after the previously-shown
source:

thinlines_

box dotted wid last [].wid ht last [].ht at last []

move to 0.85<last [].sw,last [].se>

spline <- down arrowht*2 right arrowht/2 then right 0.15; "\tt last []" ljust

arrow <- down 0.3 from R1.start chop 0.05; "\tt R1.start" below

arrow <- down 0.3 from R1.end chop 0.05; "\tt R1.end" below

arrow <- down last [].c.y-last arrow.end.y from R1.c; "\tt R1.centre" below

dimension_(from R1.start to R1.end,0.45,\tt elen_,0.4)

dimension_(right_ dimen_ from R1.c-(dimen_/2,0),0.3,\tt dimen_,0.5)

.PE

• The line thickness is set to the default thin value of 0.4pt, and the box displaying the element
body block is drawn. Notice how the width and height can be specified, and the box centre
positioned at the centre of the block.

8

• The next paragraph draws two objects, a spline with an arrowhead, and a string left justified
at the end of the spline. Other string-positioning modifiers than ljust are rjust, above,
and below. Lines to be read by pic can be continued by putting a backslash as the rightmost
character.

• The last paragraph invokes a macro for dimensioning diagrams.

4.2 The two-terminal elements

Figures 4, 5, and 6 are tables of the two-terminal elements. Several elements are included more
than once to illustrate some of their arguments, which are listed in Section 15. In the m4 language,
macro arguments are written within parentheses following the macro name, with no space between
the name and the opening parenthesis. Lines can be broken before a macro argument because m4
ignores white space before arguments.

The first argument of the two-terminal elements, if included, defines the invisible line along
which the element is drawn. The other arguments produce variants of the default elements. Thus,
for example,

resistor(up 1.25,7)

resistor

resistor(,E) ≡ ebox

resistor(,6)

inductor

inductor(,W)

inductor(,,,M)

inductor(,W,6,M)

capacitor

capacitor(,C)

fuse

xtal

arrowline

tline

switch

switch(,,O)

switch(,R,C)

switch(,,,B)

switch(,,C,B)

source

source(,I)

source(,i)

−+ source(,V)

source(,v)

source(,AC)

source(,X)

source(,,0.4)

µA source(,"μA")

gap

gap(,,A)

consource

consource(,I)

− + consource(,V)

battery

battery(,3,R)

ebox

ebox(,0.5,0.3)

Figure 4: Two-terminal element macros, with some variations.

9

diode

diode(,Z,RE)

diode(,S)

diode(,T,E)

diode(,L)

diode(,B)

diode(,D)

diode(,LE)

diode(,PR)

Figure 5: Variants of diode(linespec, B|D|L|LE[R]|P[R]|S|T|Z,[R][E]).

amp

amp(,0.3)

delay

delay(,0.2)

integrator

integrator(,0.4)

Figure 6: Amplifier, delay, and integrator.

draws a resistor 1.25 units long up from the current position, with 7 vertices per side. The macro
up evaluates to up but also resets the current directional parameters to point up.

Most of the two-terminal elements are oriented; that is, they have a defined polarity. Sev-
eral element macros include an argument that reverses polarity, but there is also a more general
mechanism. The first argument of the macro

reversed(‘macro name’,macro arguments)
is the name of a two-terminal element in quotes, followed by the element arguments. The element
is drawn with reversed direction. Thus,

diode(right 0.4); reversed(‘diode’,right 0.4)
draws two diodes to the right, but the second one points left.

Figure 7 shows some two-terminal elements with arrows or lines overlaid to indicate variability
using the macro variable(‘element’,type,angle,length), where type is one of A, P, L, N, with
C or S optionally appended to indicate continuous or stepwise variation. Alternatively, this macro
can be invoked similarly to the label macros in section 4.4 by specifying an empty first argument;
thus

resistor(down dimen); variable(,uN)
draws the resistor in Figure 7.

C S

A

P

L

N

Figure 7: Illustrating variable(‘element’,[A|P|L|[u]N][C|S],angle,length). For example,
variable(‘capacitor(down dimen)’) draws the leftmost capacitor shown above, and
variable(‘resistor(down dimen)’,uN) draws the resistor. The default angle is 45◦, regardless
of the direction of the element. The array on the right shows the effect of the second argument.

10

Head

Tail

A1

A2

em arrows(N)

em arrows(ND,45) . . .(I) . . .(ID) . . .(E) . . .(ED)

Figure 8: Radiation arrows: em arrows(type, angle, length)

Figure 8 contains arrows for indicating radiation effects. The arrow stems are named A1, A2,
and each pair is drawn in a [] block, with the names Head and Tail defined to aid placement near
another device. The second argument specifies absolute angle in degrees (default 135 degrees).

4.3 Branch-current arrows

Arrowheads and labels can be added to conductors using basic pic statements. For example, the
following line adds a labeled arrowhead at a distance alpha along a horizontal line that has just
been drawn. Many variations of this are possible:

arrow right arrowht from last line.start+(alpha,0) "i_1" above
Macros have been defined to simplify the labelling of two-terminal elements. The macro
b current(label, above |below , In|O[ut], Start|E[nd], frac)

draws an arrow from the start of the last-drawn two-terminal element frac of the way toward the
body. If the fourth argument is End, the arrow is drawn from the end toward the body. If the
third element is Out, the arrow is drawn outward from the body. The first argument is the desired
label, of which the default position is the macro above , which evaluates to above if the current
direction is right or to ljust, below, rjust if the current direction is respectively down, left, up.
The label is assumed to be in math mode unless it begins with sprintf or a double quote, in which
case it is copied literally. A non-blank second argument specifies the relative position of the label
with respect to the arrow, for example below , which places the label below with respect to the
current direction. Absolute positions, for example below or ljust, also can be specified. Figure 9
illustrates the resulting eight possibilities.

i

b current(i)
i

. . .(i,below)

i

. . .(i,,O)
i

. . .(i,below ,O)

i

b current(i,,,E)
i

. . .(i,below ,,E)

i

. . .(i,,O,E,0.2)
i

. . .(i,below ,O,E)

Figure 9: Illustrating b current. In all cases the drawing direction is to the right.

For those who prefer a separate arrow to indicate the reference direction for current, the macros
larrow(label, ->|<-,dist) and rarrow(label, ->|<-,dist) are provided. The label is placed out-
side the arrow as shown in Figure 10. The first argument is assumed to be in math mode unless it
begins with sprintf or a double quote, in which case the argument is copied literally. The third
argument specifies the separation from the element.

i

larrow(i)
i

rarrow(i)

i

larrow(i,<-)
i

rarrow(i,<-)

Figure 10: The larrow and rarrow macros are drawn adjacent to the element to provide a reference
direction.

4.4 Labels

Macros for labeling two-terminal elements are included:

11

llabel(arg1,arg2,arg3)
clabel(arg1,arg2,arg3)
rlabel(arg1,arg2,arg3)
dlabel(long,lat,arg1,arg2,arg3)
The first macro places the three arguments, which are treated as math-mode strings, on the

left side of the element block with respect to the current direction: up, down, left, right. The
second places the arguments along the centre, and the third along the right side. Thus a simple
circuit example with labels is which produces Figure 11. The macro dlabel performs these func-

% ‘Loop.m4’

.PS

cct_init

define(‘dimen_’,0.75)

loopwid = 1; loopht = 0.75

source(up_ loopht); llabel(-,v_s,+)

resistor(right_ loopwid); llabel(,R,); b_current(i)

inductor(down_ loopht,W); rlabel(,L,)

capacitor(left_ loopwid,C); llabel(+,v_C,-); rlabel(,C,)

.PE

−
vs

+

Ri

L

+
vC

−
C

Figure 11: A loop containing labeled elements, with its source code.

tions for an obliquely-drawn element, placing the three macro arguments at vec (-long,lat),
vec (0,lat), and vec (long,lat) respectively relative to the centre of the element. Labels be-
ginning with sprintf or a double quote are copied literally rather than assumed to be in math
mode.

5 Other circuit elements

Many basic elements are not two-terminal. These elements are usually enclosed in a block, and
contain named locations in the interior. In some cases, an invisible line determining length and
direction (but not position) can be specified by the first argument, as for the two-terminal elements.
Instead of positioning by the first line, the enclosing block must be placed by using its compass
corners, thus: element with corner at position or, when the block contains a predefined location,
thus: element with location at position. A few macros are positioned with the first argument; the
ground macro, for example: element(at position).

The macro potentiometer(linespec,cycles,fractional pos,length,· · ·), shown in Figure 12, first
draws a resistor along the specified line, then adds arrows for taps at fractional positions along the
body, with default or specified length. A negative length draws the arrow from the right of the
current drawing direction.

potentiometer(down dimen)

Start

End

T1

...(down dimen ,,0.25,-0.2,0.75,0.2)

Start

End

T1
T2

Figure 12: Default and multiple-tap potentiometer.

ground ground(,T) (,,F) (,,E) (,,S,90) (,,L) (,,P)

Figure 13: Ground symbols.

12

The ground symbol, shown in Figure 13, macro has four arguments:
ground(at position, T, N|F|S|L|P|E, U|D|L|R|angle)

so that, for example, the lines
move to (1.5,2); ground
ground(at (1.5,2))

have identical effect. The second argument truncates the stem, and the third defines the symbol
type. The fourth argument specifies the angle at which the symbol is drawn, with down the default.

The arguments of the macro antenna(at position, T, A|L|T|S|D|P|F, U|D|L|R|angle)
shown in Figure 14 are similar to those of ground.

T

antenna

T

(,T)

T1 T2

(,,L)

T1 T2

(,T,L)

T

(,,T)

T1 T2

(,,S)

T1 T2

(,,D)

T

(,,P)

T

(,,F)

Figure 14: Antenna symbols, with macro arguments shown above and predefined terminal names
below.

Figure 15 illustrates the macro
opamp(linespec, - label, + label, size, [R][P])

The element is enclosed in a block containing the predefined internal locations shown. These
locations can be referenced in later commands, for example as ‘last [].Out.’ The first argument
defines the direction and length of the opamp, but the position is determined either by the enclosing
block of the opamp, or by a construction such as ‘opamp with .In1 at Here’, which places the
internal position In1 at the specified location. There are optional second and third arguments for
which the defaults are scriptsize$-$ and scriptsize$+$ respectively, and the fourth argument
changes the size of the opamp. The fifth argument adds a power connection, exchanges the second
and third entries, or both.

−

+

opamp

Out

In1

In2

E1

E2

−

+

Point (15); opamp(,,,,PR)

V1

V2 − +

Point (90); opamp

Figure 15: Operational amplifiers. The P option adds power connections. The second and third
arguments can be used to place and rotate arbitrary text at In1 and In2.

Typeset text associated with circuit elements is not rotated by default, as illustrated by the
second and third opamps in Figure 15. The opamp labels can be rotated if necessary by using
PSTricks \rput commands as second and third arguments, for example.

The code in Figure 16 places an opamp with three connections.

line right 0.2 then up 0.1

A: opamp(up_,,,0.4,R) with .In1 at Here

line right 0.2 from A.Out

line down 0.1 from A.In2 then right 0.2

−+

Figure 16: A code fragment invoking the opamp(linespec,-,+,size,[R][P]) macro.

Figure 17 shows variants of the transformer macro, which has predefined internal locations P1,
P2, S1, and S2. The first argument specifies the direction and distance from P1 to P2, with position
determined by the enclosing block as for opamps. The second argument places the secondary side of
the transformer to the left or right of the drawing direction. The optional third argument specifies
the number of primary arcs, the fourth omits the iron core, and the fifth specifies the number of
secondary arcs.

13

P1

P2

S1

S2

transformer

P1

P2

S1

S2

...(down 0.6,,2,,8)

P1

P2

S1

S2

...(,,8,,4)

P1

P2

S1

S2

...(,,8,A)

P1

P2

S1

S2

...(,R,8,A)

Figure 17: The transformer(linespec,L|R,np,A,ns) macro.

speaker

In1

In2

In3

In4 In5

In6 In7

Box

bell

In1

In2

In3

Box Circle

microphone

In1

In2

In3

Circle

buzzer

In1

In2

In3

Box

earphone

In1

In2

In3

Box

Figure 18: Audio components: speaker(U|D|L|R|degrees,size), bell, microphone, buzzer,
earphone, with their internally named positions and components.

Figure 18 shows some audio devices, defined in [] blocks, with input locations as shown. The
first argument specifies the device orientation. Thus, S: speaker(U) with .In2 at Here places
an upward-facing speaker with input In2 at the current location.

The seven-argument nport macro is shown in Figure 19. The first argument is a box specifica-
tion, such as size or fill parameters, or text. The second to fifth arguments specify the number of
ports (pin-pairs) to be drawn respectively on the west, north, east, and south sides of the box. The
end of each pin has a name corresponding to the side, port number and a or b pin, as shown. The
sixth argument specifies the ratio of port width to inter-port space, the seventh is the pin length,
and setting the last argument to N omits the pin dots. The complete structure is enclosed in a
block.

W1a

W1b

E1a

E1b

n-port

W1a

W1b

E1a

E3b

N1a N2b

S1a S4b

· · ·

· · ·

...

nport

nport(wid 1.5 ht 1 fill (0.9) "n-port",1,2,3,4)

Figure 19: The nport macro draws a sequence of pairs of named pins on each side of a box. The
default is a twoport. The pin names are shown.

Figure 20 shows the macro
contact(O|C, R)

which contains predefined locations P, C, O for the armature and normally closed and normally
open terminals. The macro

relay(poles, O|C, R)
defines coil terminals V1, V2 and contact terminals Pi, Ci, Oi.

Figure 21 shows the variants of bipolar transistor macro
bi tr(linespec,L|R,P,E)

which contains predefined internal locations E, B, C. The first argument defines the distance and
direction from E to C, with location determined by the enclosing block as for other elements, and the
base placed to the left or right of the current drawing direction according to the second argument.

14

contact

P

O

C

contact(,R)

P

O

C
contact(O,) contact(C,)

V1 V2

P1

O1

C1

relay

V1 V2

P1

O1

C1

P2

O2

C2

relay(2,,) relay(2,,R) relay(2,O,) relay(2,C,)

Figure 20: The contact and relay macros (default direction right).

E

B

C

bi tr(up dimen)
E

B

C

bi tr(,R)
E

B

C

bi tr(,,P)
E

B

C

bi tr(,,,E)
E

G

C

igbt
E

G

C

igbt(,,LD)

Figure 21: Bipolar transistor variants (current direction upward).

Setting the third argument to ‘P’ creates a PNP device instead of NPN, and setting the fourth to
‘E’ draws an envelope around the device. Thus for example, the code fragment in Figure 22 places
a bipolar transistor, connects a ground to the emitter, and connects a resistor to the collector.

S: dot; line left_ 0.1; up_

Q1: bi_tr(,R) with .B at Here

ground(at Q1.E)

line up 0.1 from Q1.C; resistor(right_ S.x-Here.x); dot

Figure 22: The bi tr(linespec,L|R,P,E) macro.

The bi tr and igbt macros are wrappers for the macro bi trans(linespec, L|R, chars, E),
which draws the components of the transistor according to the characters in its third argument.
For example, multiple emitters can be specified as shown in Figure 23.

Some FETs with predefined internal locations S, D, and G are also included, with similar
arguments to those of bi tr, as shown in Figure 24. In all cases the first argument is a linespec,
and entering R as the second argument orients the G terminal to the right of the current drawing
direction. The macros in the top three rows of the figure are wrappers for the general macro
mosfet(linespec,R,characters,E). The third argument of this macro is a subset of the characters
{BDEFGLQRSTZ}, each letter corresponding to a diagram component as shown in the bottom row of
the figure. Preceding the characters B, G, and S by u or d adds an up or down arrowhead to the
pin, and preceding T by d negates the pin. This system allows considerable freedom in choosing or
customizing components, as illustrated in Figure 24.

C

B

E

B

C

BU

uE
S S

bi trans(,,BCuEBUS)
C

B

E0E2 E1

Em2

bi trans(,,BCdE2BU)

Figure 23: The bi trans(linespec,L|R,chars,E) macro. The sub-elements are specified by the
third argument. The substring En creates multiple emitters E0 to En.

15

A UJT macro with predefined internal locations B1, B2, and E is illustrated in Figure 25, and an
SCR macro with predefined internal locations T1, T2, and G is illustrated in Figure 26. The number
of possible semiconductor symbols is very large, so these macros must be regarded as prototypes.
Some other non-two-terminal macros are dot, which has an optional argument ‘at location’, the
line-thickness macros, the fill macro, and crossover, which is a useful if archaic method to show
non-touching conductor crossovers, as in Figure 27.

j fet(right dimen ,,,E)

G

S D

j fet(,,P,)

G

S D

e fet(,R,,)

G

S D

e fet(,,P,)

d fet(,,,)

d fet(,,P,)

e fet(,,,S)

e fet(,,P,S)

d fet(,,,S)

d fet(,,P,S)

c fet(,,,) c fet(,,P)

mosfet(,,dGSDF,)

dG

F
S D

mosfet(,,LEDSQuB,)

L

E
Q

uB

mosfet(,,ZSDFdT,)

Z

dT

mosfet(,,LEDSuB)

G

S DB

Figure 24: JFET, insulated-gate enhancement and depletion MOSFETS, and simplified versions,
see [12]. These macros are wrappers that invoke the mosfet macro as shown in the bottom row.
At the lower right is a custom device defined by omitting the substrate connection.

B1

E

B2

ujt(up dimen ,,,E)

B1

E B2

ujt(,,P,)

B1

EB2

ujt(,R,,)

B1

EB2

ujt(,R,P,)

Figure 25: UJT devices, with current drawing direction up.

T1 T2
G

scr(right dimen ,,,E)

T1 T2
G

scr(,R,,)

T1 T2
G

scr(,,G,E)

T1 T2
G

scr(,R,G,E)

Figure 26: SCR elements, drawing direction to the right.

Q1 Q2

RL

Vcc
RLR1 R1

R2

−Vcc

R2

Figure 27: Bipolar transistor circuit, illustrating crossover.

16

6 Directions and macro-level looping

Aside from its block-structure capabilities, looping, and macros, pic has a very useful concept of the
current point and current direction, the latter unfortunately limited to up, down, left, right.
Objects can be drawn at absolute locations or placed relative to previously-drawn objects. These
macros need to know the current direction so whenever up, down, left, right are used they
should be written respectively as the macros up , down , left , right .

To draw circuit objects in other than the standard four directions, the macros Point (degrees),
point (radians), and rpoint (rel linespec) re-define the entries m4a , m4b , m4c , m4d of a
transformation matrix, which is used for rotations and, potentially, for more general transforma-
tions. Thus ‘Point (-30); resistor’ draws a resistor along a line with slope -30 degrees, and
‘rpoint (to Z)’ sets the current direction cosines to point to location Z. Macro vec (x,y) eval-
uates to the position (x,y) rotated by the argument of the previous Point , point or rpoint
command. The macro rvec (x,y) evaluates to position Here + vec (x,y) and is the principal
device used to define relative locations in the circuit macros. Thus, line to rvec (x,0) draws a
line of length x in the current direction.

Figure 28 shows a circuit drawn using these macros. The source for the figure is shown, and
illustrates that some hand-placement of labels using dlabel may be useful when elements are drawn
obliquely. Because m4 macro arguments are separated by commas, any commas that are integral

% ‘Oblique.m4’

.PS

cct_init

Ct:dot; Point_(-60); capacitor(,C); dlabel(0.12,0.12,,,C_3)

Cr:dot; left_; capacitor(,C); dlabel(0.12,0.12,C_2,,)

Cl:dot; down_; capacitor(from Ct to Cl,C); dlabel(0.12,0.12,C_1,,)

T:dot(at Ct+(0,elen_))

inductor(from T to Ct); dlabel(0.12,-0.1,,,L_1)

Point_(-30); inductor(from Cr to Cr+vec_(elen_,0))

dlabel(0,-0.07,,L_3,)

R:dot

L:dot(at (Cl-(Cos(30)*(elen_),0),R))

inductor(from L to Cl); dlabel(0,-0.12,,L_2,)

right_; resistor(from L to R); rlabel(,R_2,)

resistor(from T to R); dlabel(0,0.15,,R_3,) ; b_current(y,ljust)

line from L to 0.2<L,T>

source(to 0.5 between L and T); dlabel(sourcerad_+0.07,0.1,-,,+)

dlabel(0,sourcerad_+0.07,,u,)

resistor(to 0.8 between L and T); dlabel(0,0.15,,R_1,)

line to T

.PE

C3

C2

C1

L1

L3L2

R2

R3

y

−

+
u

R1

Figure 28: Illustrating elements drawn at oblique angles.

parts of the arguments must be protected, either by parentheses as illustrated in inductor(from
Cr to Cr+vec (elen ,0)), or by multiple single quotes, ‘‘,’’, as necessary. Commas also may
be avoided by writing 0.5 between L and T instead of 0.5<L,T>.

Sequential location names such as In1, In2, . . . in logic and other diagrams can be generated
automatically at the m4 processing stage. The libgen library defines the macro

for (start, end, increment, ‘actions’)
for this purpose. Nested loops are allowed and the innermost loop index variable is m4x. The
first three arguments must be integers and the end value must be reached exactly; for example,
for_(1,3,2,‘print In‘’m4x’) prints locations In1 and In3, but for_(1,4,2,‘print In‘’m4x’)
does not terminate since the index takes on values 1, 3, 5,

17

7 Logic gates

Figure 29 shows the basic logic gates included in library liblog.m4. Gate macros have an optional
argument, an integer N from 0 to 16, defining locations In1, · · · InN, as illustrated for the NOR
gate in the figure. Beyond a default number (6) of inputs, the gates are given wings as shown in
Figure 30. By default N = 2, except for macros NOT gate and BUFFER gate, which have one input
In1 unless they are given a first argument, which is treated as the line specification of a two-terminal
element.

Negated inputs or outputs are marked by circles drawn by the NOT_circle macro. The name
marks the point at the outer edge of the circle and the circle itself has the same name prefixed by
N . For example, the output circle of a nand gate is named N Out and the outermost point of the
circle is named Out. The macro IOdefs creates a sequence of named outputs.

Gates are typically not two-terminal elements and are normally drawn horizontally or vertically
(although arbitrary directions may be set with e.g. Point (degrees)). Each gate is contained in a
block of typical height 6*L unit where L unit is a macro intended to establish line separation for
an imaginary grid on which the elements are superimposed.

AND gate

OR gate

BUFFER gate

XOR gate

NAND gate

NOR gate(3)
Out

N Out

In1
In2
In3

NOT gate

NXOR gate

&
NAND gate(,B)

≥ 1
NOR gate(3,NB)

= 1
BOX gate(PN,N,,,=1)

=
BOX gate(PP,N,,,=)

Figure 29: Basic logic gates. The input and output locations of a three-input NOR gate are shown.
Inputs are negated by including an N in the second argument letter sequence. A B in the second
argument produces a box shape as shown in the rightmost column, where the second example has
AND functionality and the bottom two are examples of exclusive OR functions.

Ȳ

Y

Ē

S0

S1

S2

I0 I1 I2 I3 I4 I5 I6 I7

Figure 30: Eight-input binary multiplexer circuit, illustrating a gate with wings and for looping
in the source.

18

Including an N in the second argument character sequence of any gate negates the inputs, and
including B in the second argument invokes the general macro BOX gate([P|N]...,[P|N],horiz
size,vert size,label), which draws box gates. Thus, BOX gate(PNP,N,,8,\geq 1) creates a gate
of default width, eight L units height, negated output, three inputs with the second negated, and
internal label “≥ 1”. If the fifth argument begins with sprintf or a double quote then the argument
is copied literally; otherwise it is treated as scriptsize mathematics.

Input locations retain their positions relative to the gate body regardless of gate orientation. To
illustrate, the source in Figure 31 produces the SR flip-flop shown.

% ‘FF.m4’

.PS

log_init

S: NOR_gate

left_

R: NOR_gate at S+(0,-L_unit*(AND_ht+1))

line from S.Out right L_unit*3 then down S.Out.y-R.In2.y then to R.In2

line from R.Out left L_unit*3 then up S.In2.y-R.Out.y then to S.In2

line left 4*L_unit from S.In1 ; "Ssp_" rjust

line right 4*L_unit from R.In1 ; "sp_R" ljust

.PE

S

R

Figure 31: SR flip-flop.

Figure 32 shows a multiplexer block with variations, and the macro FlipFlop(D|T|RS|JK,
label, boxspec), which is a wrapper for the more specific FlipFlop6(label, spec, boxspec)

Q1

Q

Q

CK

D

FlipFlop(D,Q1)

Q2

Q

Q

CK

T

FlipFlop(T,Q2,ht h1 wid w1 fill (0.9))

Q

Q

S

R

FlipFlop(RS)

Q

Q

CK

PR

CLR

K

J

FlipFlop(JK)

Q

Q

CK

D

FlipFlop6(,DnCKQNQ)

Q

CK

T

FlipFlop6(,TCKQ)

Q

CK

CLR

K

J

FlipFlopJK(,JCKKQnCLR)

Mx1

Sel

0

1

2

3

Mux(4,Mx1)

In0

In1

In2

In3

Out

Sel

Sel0

1

2

3

Mux(4,,L)

Sel0

1

2

3

Mux(4,,T)

Sel

0

1

2

3

Mux(4,,LT)

Figure 32: The FlipFlop and Mux macros, with variations.

19

and FlipFlopJK(label, spec, boxspec) macros. Pins on the latter two can be omitted or
negated according to their second argument. The second argument of FlipFlop6, for example,
contains NQ, Q, CK, S, PR, CLR to include these pins. Preceding any of these with n negates the
pin. Any other substring applies to the top left pin, with . equating to a blank.

A good strategy for drawing complex logic circuits might be summarized as follows:

• Establish the absolute locations of gates and other major components (e.g. chips) relative to
a grid of mesh size commensurate with L unit, which is an absolute length.

• Draw minor components or blocks relative to the major ones, using parametrized relative
distances.

• Draw connecting lines relative to the components and previously-drawn lines.

• Write macros for repeated objects.

• Tune the diagram by making absolute locations relative, and by tuning the parameters. Some
useful macros for this are the following, which are in units of L unit:

AND ht, AND wd: the height and width of basic AND and OR gates

BUF ht, BUF wd: the height and width of basic buffers

N diam: the diameter of NOT circles

In addition to the logic gates described here, some experimental IC chip diagrams are included with
the distributed example files.

8 Element and diagram scaling

There are several issues related to scale changes. You may wish to use millimetres, for example,
instead of the default inches. You may wish to change the size of a complete diagram while keeping
the relative proportions of objects within it. You may wish to change the sizes or proportions
of individual elements within a diagram. You must take into account that line widths are scaled
separately from drawn objects, and that the size of typeset text is independent of the pic language.

The scaling of circuit elements will be described first, then the pic scaling facilities.

8.1 Circuit scaling

The circuit elements all have default dimensions that are multiples of the pic environmental pa-
rameter linewid, so changing this parameter changes default element dimensions. The scope of a
pic variable is the current block; therefore a sequence such as

resistor
[linewid = linewid*1.5; resistor]
resistor

produces a string of three resistors, the middle one larger than the other two. Alternatively, you
may redefine the default length elen or the body-size parameter dimen . For example, adding the
line

define(‘dimen ’,dimen *1.2)
after the cct init line of quick.m4 produces slightly larger element body sizes.

8.2 Pic scaling

There are at least three kinds of graphical elements to be considered:

1. The default sizes of linear and planar pic objects can be redefined by assigning values to the
built-in pic variables arcrad, arrowht, arrowwid, boxht, boxrad, boxwid, circlerad,
dashwid, ellipseht, ellipsewid, lineht, linewid, moveht, movewid, textht, textwid.
The · · ·ht and · · ·wid parameters refer to the default sizes of vertical and horizontal lines,

20

moves, etc., except for arrowht and arrowwid, which refer to arrowhead dimensions. The
boxrad parameter can be used to put rounded corners on boxes.

Assigning a value to the variable scale multiplies all the built-in pic dimension variables
except arrowht, arrowwid, textht, and textwid by the new value of scale (gpic multiplies
them all). Thus the file quick.m4 can be modified to use millimetres as follows:

.PS # Pic input begins with .PS
scale = 25.4 # mm
cct_init # Set defaults

elen = 19 # Variables are allowed
...

The .PS line can be used to scale the entire drawing, regardless of its interior. Thus, for
example, the line .PS 100/25.4 scales the entire drawing to a width of 100 mm. However,
this method is not normally suitable for circuits because arrowheads, line widths, and text
are treated differently.

If the final picture width exceeds the value of maxpswid, which has a default size of 8.5, then
the picture is scaled to this value. Similarly if the height exceeds maxpsht, (default 11), then
the picture is scaled to fit.

2. The finished size of typeset text is independent of pic variables, but can be determined as in
Section 10. Thus, once dimensions x and y are known, then "text" wid x ht y assigns the
dimensions of text.

3. Line widths are independent of diagram and text scaling, and have to be set independently.
For example, the assignment linethick = 1.2 sets the default line width to 1.2 pt. The
macro linethick (points) is also provided, together with default macros thicklines and
thinlines .

9 Writing macros

The m4 language is quite simple and is described in numerous documents such as the original
reference [7] or in later manuals [13]. If a new element is required, then modifying and renaming
one of the library definitions or simply adding an option to it may suffice. Hints for drawing general
two-terminal elements are given in libcct.m4. However, if an element or composite is to be drawn
in only one orientation then most of the elaborations used for general two-terminal elements in
Section 4 can be dropped.

A macro is defined using quoted name and replacement text as follows:
define(‘name’,‘replacement text’)
After this line is read by the m4 processor, then whenever name is encountered as a separate

string, it is replaced by its replacement text, which may have multiple lines. The quotation charac-
ters are used to defer macro expansion. Macro arguments are referenced inside a macro by number;
thus $1 refers to the first argument.

In the following example, two macros are defined to simplify the repeated drawing of a series
resistor and series inductor, and the macro tsection defines a subcircuit that is replicated several
times to generate Figure 33.

% ‘Tline.m4’

.PS

cct_init

hgt = elen_*1.5

ewd = dimen_*0.9

define(‘sresistor’,‘resistor(right_ ewd); llabel(,r)’)

define(‘sinductor’,‘inductor(right_ ewd,W); llabel(,L)’)

21

r L

RC

r L

RC

r L

RC

r L

RC

r L

RC

r

Figure 33: A lumped model of a transmission line, illustrating the use of custom macros.

define(‘tsection’,‘sinductor

{ dot; line down_ hgt*0.25; dot

gpar_(resistor(down_ hgt*0.5); rlabel(,R),

capacitor(down_ hgt*0.5); rlabel(,C))

dot; line down_ hgt*0.25; dot }

sresistor ’)

SW: Here

gap(up_ hgt)

sresistor

for i=1 to 4 do { tsection }

line dotted right_ dimen_/2

tsection

gap(down_ hgt)

line to SW

.PE

10 Interaction with LATEX

Although they are not needed for many circuit diagrams, the exact dimensions of typeset labels and
other TEX boxes may be required either explicitly for calculations or implicitly for determining the
bounding box of the diagram. These dimensions are unknown until LATEX is invoked; the solution
to this difficulty is to process the diagram twice. First the diagram source is processed by m4 and a
pic processor to make a .tex file, and the document source is LATEXed to include the diagram and
to write the required dimensions into a supplementary file. Then the diagram source is processed
again, reading the required dimensions from the supplementary file and producing a diagram ready
for final LATEXing. A summary of this hackery follows:

• Put \usepackage{boxdims} into the document source.

• Insert the following at the beginning of the diagram source, where jobname is the name of
the main LATEX file:
sinclude(jobname.dim)
s init(unique name)

• Use the macro s box(‘LATEX input’) to produce typeset text of known size; alternatively,
invoke the macros \boxdims and boxdim described below.

The macro s box(‘LATEX input’) evaluates to
"\boxdims{name}{LATEX input}” wid boxdim(name,w) ht boxdim(name,v)

On the second pass, this is equivalent to
"LATEX input" wid x ht y

where x and y are the typeset dimensions of the LATEX input. If s box is given two or more
arguments then they are processed by sprintf.

The file boxdims.sty distributed with this package should be installed where LATEX can find it.
The essential idea is to define a two-argument macro \boxdims that writes out definitions for the

22

width, height and depth of its typeset second argument into file jobname.dim, where jobname is the
name of the main source file. The first argument of \boxdims is used to construct unique symbolic
names for these dimensions. Thus, the line

box "\boxdims{Q}{\Huge Hi there!}"
has the same effect as

box "\Huge Hi there!"
except that the line

define(‘Q w’,77.6077pt)define(‘Q h’,17.27779pt)define(‘Q d’,0.0pt)dnl
is written into file jobname.dim (and the numerical values depend on the current font).

Recent versions of boxdims.sty include the macro
\boxdimfile{dimension file}

for specifying an alternative to jobname.dim as the dimension file to be written. This simplifies
cases where jobname is not known in advance or where an absolute path name is required.

Another simplification is available. Instead of the sinclude(dimension file) line above, the
dimension file can be read by m4 before reprocessing the source for the second time:

m4 library files dimension file diagram source file ...
Objects can be tailored to their attached text by invoking \boxdims and boxdim. The small

source file in Figure 34, for example, produces the box in the figure.

% ‘eboxdims.m4’

.PS

sinclude(CMman.dim) # The main input file is CMman.tex

box fill_(0.9) wid boxdim(Q,w) + 5pt__ ht boxdim(Q,v) + 5pt__ \

"\boxdims{Q}{\large$\displaystyle\int_0^T e^{tA}\,dt$}"

.PE

∫ T

0
etA dt

Q w

Q h+Q d

Figure 34: Fitting a box to typeset text.

The source file for the figure is processed by m4 and a pic interpreter to produce a .tex file,
then LATEX is run, and then these steps are repeated. The line sinclude(jobname.dim) reads
the named file if it exists. The macro boxdim(name,suffix,default) from libgen.m4 expands the
expression boxdim(Q,w) to the value of Q_w if it is defined, else to its third argument if defined, else
to 0, the latter two cases applying if jobname.dim doesn’t exist yet. The values of boxdim(Q,h) and
boxdim(Q,d) are similarly defined, and for convenience, boxdim(Q,v) evaluates to the sum of these.
Macro pt__ is defined as *scale/72.27 in libgen.m4, to convert points to drawing coordinates.

The following example illustrates the common requirement for knowing text dimensions in cal-
culating diagram bounding boxes:

.PS
B: box
"Left text" at B.w rjust
"Right text: x^2" at B.e ljust

.PE

The pic interpreter cannot know the dimensions of the text to the left and right of the box, and
the resulting diagram is generated using default dimensions. One solution is to measure the text
sizes by hand and include them literally, thus:
"Left text" wid 38.47pt ht 7pt at B.w rjust

but this is tedious. Figure 35 illustrates the result of invoking s box.
The argument of s init, which should be unique within jobname.dim, is used to generate a

unique \boxdims first argument for each invocation of s_box in the current file. If s_init has been
omitted, the symbols “!!” are inserted into the text as a warning. Be sure to quote any commas
in the arguments. Since the first argument is LATEX source, make a rule of quoting it to avoid
comma and name-clash problems. For convenience, the macros s ht, s wd, and s dp evaluate to
the dimensions of the most recent s box string or to the dimensions of their argument names, if
present.

23

.PS

sinclude(jobname.dim)
s init(unique name)
B: box

s box(‘Left text’) at B.w rjust

s box(‘Right text: $x^%g$’,2) at B.e ljust

.PE

Left text Right text: x2

Figure 35: The macro s box sets string dimensions automatically when processed twice. When
two or more arguments are present, they are passed through sprintf. The dots show the figure
bounding box.

More tricks can be played. The example
S: s_box(‘\includegraphics{file.eps}’) with .sw at location

shows a nice way of including eps graphics in a diagram. The included picture (named S in the
example) has known position and dimensions, which can be used to add vector graphics or text to
the picture. To aid in overlaying objects, the macro boxcoord(object name, x-fraction, y-fraction)
evaluates to a position, with boxcoord(object name,0,0) at the lower left corner of the object,
and boxcoord(object name,1,1) at its upper right.

11 PSTricks tricks

This section applies only to a pic processor (dpic) that is capable of producing PSTricks output.
Arbitrary PSTricks commands can be mixed with m4 input to create complicated effects, but
some commonly required effects are particularly simple.

The rotation of text is illustrated by the file

% ‘Axes.m4’

.PS

arrow right 0.7 "‘x-axis’" below

arrow up 0.7 from 1st arrow.start "‘\rput[B]{90}(0,0){y-axis}’" rjust

.PE

which produces horizontal text, and text rotated 90◦ along the vertical line.
Another common requirement is the filling of arbitrary shapes, as illustrated by the following

lines within a .m4 file:

command "‘\pscustom[fillstyle=solid,fillcolor=lightgray]{’"
drawing commands for an arbitrary closed curve
command "‘}%’"

The macro shade(gray value,closed line specs) can be invoked to accomplish the same effect as
the above example.

For colour printing or viewing, arbitrary colours can be chosen, as described in the PSTricks
manual. PSTricks parameters can be set by inserting the line

command "‘\psset{option = value, · · ·}’"
in the drawing commands or by using the macro psset (PSTricks options).

12 Web documents, pdf, and alternative output formats

Circuit diagrams contain graphics and symbols, and the issues related to web publishing are similar
to those for other mathematical documents. Here the important factor is that gpic -t gener-
ates output containing tpic \special commands, which must be converted to the desired output,
whereas dpic can generate several alternative formats. One of the easiest methods for producing
web documents is to generate postscript as usual and to convert the result to pdf format with Adobe
Distiller or equivalent.

24

PDFlatex produces pdf directly without first creating a postscript file but does not handle tpic
\specials, so dpic must be installed and an extra processing step performed. Most PDFLatex dis-
tributions do not accept PSTricks output directly, but several alternative dpic output formats such
as mfpic and MetaPost will work for basic diagrams. MetaPost is probably the preferred mode
as PDFlatex handles MetaPost graphics and text directly. Create a file filename.mp containing
appropriate header lines, for example:

verbatimtex
\documentclass[11pt]{article}
\usepackage{times,boxdims,graphicx}
\boxdimfile{tmp.dim}
\begin{document} etex

Then append one or more diagrams by using the equivalent of
m4 <path>mpost.m4 library files diagram.m4 | dpic -s >> filename.mp
The command “mpost --tex=latex filename.mp end” processes this file, formatting the di-

agram text by creating a temporary .tex file, LATEXing it, and recovering the .dvi output to
create filename.1 and other files. If the boxdims macros are being invoked, this process must
be repeated to scale formatted text correctly as described in Section 10. In this case, either put
sinclude(tmp.dim) in the diagram .m4 source or read the .dim file at the second invocation of
m4 as follows:

m4 <path>mpost.m4 library files tmp.dim diagram.m4 | dpic -s >> filename.mp
On some operating systems an absolute path name has to be given in place of tmp.dim to

ensure that the correct dimension file is written and read. This distribution includes a Makefile
that simplifies the process; otherwise a script can automate it.

Having produced filename.1, rename it to filename.mps and, voilà, you can now run PDFlatex
on a .tex source that includes the diagram using \includegraphics{filename.mps} in the usual
way for PDFlatex.

The Dpic processor is capable of other output formats, as illustrated in Figure 36 and in example
files included with the distribution. The LATEX drawing commands alone or with eepic or pict2e
extensions are suitable only for simple diagrams.

LATEX
LATEX
pict2e

LATEX
PSTricks

LATEX
Mfpic

Metafont

MetaPost

LATEX

LATEX
psfrag

tpic
\special

.tex

LATEX
.tex

-e

PSTricks
.tex

-p

mfpic
.tex

-m

MetaPost
.mp

-s

Postscript
psfrag

.eps

-f

Postscript
.eps

-r

Xfig
.fig

-x

dpicgpic -t m4

diagram source macro libraries

Figure 36: Output formats produced by gpic -t and dpic.

13 Developer’s notes

Several years ago in the course of writing a book, I took a few days off to write a pic-like interpreter
(dpic) to automate the tedious coordinate calculations required by LATEX picture objects. The
macros in this distribution and the interpreter are the result of that effort and of drawings I have had

25

to produce since. The interpreter has been upgraded over time to generate mfpic, MetaPost [5],
raw Postscript, Postscript with PSfrag tags, and PSTricks output, the latter my preference
because of its quality and flexibility, including facilities for colour and rotations, together with
simple font selection. In addition, xfig-compatible output has been added. Instead of pic macros I
preferred the equally simple but more powerful m4 macro processor, and therefore m4 is required
here, although dpic now supports pic-like macros. Free versions of m4 are available for Unix,
Windows, and other operating systems.

If starting over today would I not just use one of the other drawing packages available these
days? It would depend on the context: pic remains a good choice for the geometrical calculations
that are necessary for precision in line drawings. The language is also simple to learn and, more
importantly, to read. There are built-in looping and block-structure constructs that combine power
with simplicity, and the language has stood the test of time. However, no choice of tool is without
compromise, and making good graphics is time-consuming no matter how it is done.

The dpic interpreter has several output-format options that may be useful. The eepicemu and
pict2e extensions of the primitive LATEX picture objects are supported. The mfpic output allows
the production of Metafont alphabets of circuit elements or other graphics, thereby essentially
removing dependence on device drivers, but with the complication of treating every alphabetic
component as a TEX box. The xfig output allows elements to be precisely defined with dpic and
interactively placed with xfig. Dpic will also issue low-level MetaPost or Postscript commands,
so that diagrams defined using pic can be manipulated and combined with others. The Postscript
output is compatible with CorelDraw r©, and by extension to Adobe Illustrator r©. The user is
responsible for ensuring that the correct fonts are provided and for reformatting labels.

14 Bugs

The distributed macros are not written for maximum robustness. Macro arguments could be tested
for correctness and explanatory error messages could be written as necessary, but that would make
the macros more difficult to read and to write. You will have to read them when unexpected results
are obtained or when you wish to modify them.

In response to suggestions, some of the macros have been modified to allow easier customization
to forms not originally anticipated, but this process is not complete.

Here are some hints, gleaned from experience and from comments I have received.

1. Initialization: If the first element macro evaluated is non-two-terminal or is within a Pic
block, then later macros evaluated outside the block may produce the error message

there is no variable ‘rp ang’

because rp ang is not defined in the outermost scope of the diagram. To cure this problem,
put the line

cct init

immediately after the .PS line or prior to the first block. It is entirely permissible to modify
cct init to include commonly-used diagram initializations, such as the thicklines state-
ment, and to invoke cct init at the beginning of every diagram. For completeness, macros
gen init, log init, darrow init are also provided for cases where the circuit library is not
needed.

2. Pic objects versus macros: A common error is to write something like

line from A to B; resistor from B to C

when it should be

line from A to B; resistor(from B to C)

This error is caused by an unfortunate inconsistency between the linear pic objects and the
way m4 passes macro arguments.

26

3. Commas: Remember that macro arguments are separated by commas, and commas that are
part of an argument must be protected by parentheses or quotes. Thus,

shadebox(box with .n at w,h)

produces an error, whereas

shadebox(box with .n at w‘,’h)

and

shadebox(box with .n at (w,h))

do not.

4. Default lengths: Remember that the linespec argument of element macros requires both a
direction and a length. Writing

source(up)

draws a source up a distance equal to the current lineht value, which may cause confusion.
It is usually better to specify both the direction and length of an element, thus:

source(up elen).

5. Quotes: Single quote characters are stripped in pairs by m4, so the string

"‘‘inverse’’"

will be typeset as if it were

"‘inverse’".

The cure is to add single quotes.

The most subtle part of writing m4 macros is deciding when to quote arguments. In the
context of circuits it seemed best to assume that macro arguments would not be protected by
quotes at the level of macro invocation, but should be quoted inside each macro. There may
be cases where this rule is not optimal.

6. Dollar signs: The i-th argument of an m4 macro is $i, where i is an integer, so the following
construction can cause an error when it is part of a macro,

"0" rjust below

since $0 expands to the name of the macro itself. To avoid this problem, put the string in
quotes or write "$‘’0$".

7. Name conflicts: Using the name of a macro as part of a comment or string is a simple and
common error. Thus,

arrow right "$\dot x$" above

produces an error message because dot is a macro name. Macro expansion can be avoided by
adding quotes, as follows:

arrow right ‘"$\dot x$"’ above

Library macros intended only for internal use have names that begin with m4 to avoid name
clashes, but in addition, a good rule is to quote all LATEX in the diagram input.

If extensive use of strings that conflict with macro names is required, then one possibility is
to replace the strings by macros to be expanded by LATEX, for example the diagram

.PS

box "\stringA"

.PE

with the LaTeX macro

\newcommand{\stringA}{

Circuit containing planar inductor and capacitor}

27

8. Current direction: Some macros, particularly those for labels, do unexpected things if care
is not taken to preset the current direction using macros right , left , up , down , or
rpoint (·). Thus for two-terminal macros it is good practice to write, e.g.

resistor(up from A to B); rlabel(,R 1)

rather than

resistor(from A to B); rlabel(,R 1),

which produce different results if the last-defined drawing direction is not up. It might be
possible to change the label macros to avoid this problem without sacrificing ease of use.

9. Position of elements that are not 2-terminal: The linespec argument of elements defined
in [] blocks must be understood as defining a direction and length, but not the position of
the resulting block. In the pic language, objects inside these brackets are placed by default
as if the block were a box. Place the element by its compass corners or defined interior points
as described in the first paragraph of Section 5 on page 12, for example

igbt(up elen) with .E at (1,0)

10. Pic error messages: Some errors are detected only after scanning beyond the end of the
line containing the error. The semicolon is a logical line end, so putting a semicolon at the
end of lines may assist in locating bugs.

11. Incompatible processors: If you switch between dpic and gpic, remember that the li-
braries are set up for gpic by default, otherwise pstricks.m4 or one of the other configura-
tion libraries has to be processed before the other libraries. To redefine the default behaviour,
change the include statements near the top of the libraries.

12. Scaling: Pic and these macros provide several ways to scale diagrams and elements within
them, but subtle unanticipated effects may appear. The line .PS x provides a convenient
way to force the finished diagram to width x. However if gpic is the pic processor then all
scaled parameters are affected, including those for arrowheads and text, which may not be
the desired result. A good general rule is to use the scale parameter for global scaling unless
the primary objective is to specify overall dimensions.

13. Buffer overflow: The m4 error message of the form pushed back more than 4096 chars
results from expanding large macros or macro arguments, and can be avoided by enlarging
the buffer. For example, the option -B16000 enlarges the buffer size to 16000 bytes. However
this error message could also result from a syntax error.

15 List of macros

The following table lists the macros in libraries darrow.m4, libcct.m4, liblog.m4, libgen.m4, and
files gpic.m4, mfpic.m4, and pstricks.m4. Some of the example sources contain additional macros,
such as for flowcharts and binary trees.

Internal macros defined within the libraries begin with the characters m4 or M4, and are not
listed here.

The library in which each macro is found is given, and a brief description.

AND gate(n,N) log basic ‘and’ gate, 2 or n inputs; N=negated input
AND gen(n,chars,[wid,[ht]]) log general AND gate: n=number of inputs (0 ≤ n ≤ 16);

chars: B=base and straight sides; A=Arc;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles;
[N]O=output; C=center

AND ht log height of basic ‘and’ and ‘or’ gates
AND wd log width of basic ‘and’ and ‘or’ gates
BOX gate(inputs,output,swid,sht,label)

log output=[P|N], inputs=[P|N]. . ., sizes swid and sht in L units

28

BUFFER gate(linespec, N) log basic buffer, 1 input or as a 2-terminal element, N=negated input
BUFFER gen(chars,wd,ht,[N|P]*,[N|P]*,[N|P]*)

log general buffer, chars: T=triangle, [N]O=output location Out
(NO draws circle N Out); [N]I, [N]N, [N]S, [N]NE, [N]SE
input locations; C=centre location. Args 4-6 allow alternative
definitions of respective In, NE, and SE argument sequences

BUF ht log basic buffer gate height
BUF wd log basic buffer gate width
Cos(integer) gen cosine function, integer degrees
E gen the constant e
Fector(x1,y1,z1,x2,y2,z2) 3D vector projected on current view plane with top face

of 3-dimensonal arrowhead normal to x2,y2,z2
FlipFlop(D|T|RS|JK, label, boxspec)

log flip-flops, boxspec=e.g. ht x wid y
FlipFlop6(label, spec, boxspec) log 6-input flip-flops, spec=[[n]NQ][[n]Q][[n]CK][[n]PR]

[[n]CLR][[n]S][[n].|D|T|R] to include and negate pins
FlipFlopJK(label, spec,boxspec) log JK flip-flop, spec similar to above
G hht log gate half-height
HOMELIB all directory containing libraries
IOdefs(linespec,label,[P|N]*,L|R)

log Define locations label1, . . . labeln along the line; P= label only;
N=with NOT circle; R=circle to right of current direction

Intersect (Name1,Name2) gen intersection of two named lines
L unit log logic-element grid size
LH symbol(U|D|L|R|degrees) log logic-gate hysteresis symbol
LT symbol(U|D|L|R|degrees) log logic-gate triangle symbol
Max(arg, arg, . . .) gen Max of an arbitrary number of inputs
Min(arg, arg, . . .) gen Min of an arbitrary number of inputs
Mux(n, label, [L][T]) gen binary multiplexer, n inputs, L reverses pin numbers,

T puts Sel pin to top
NAND gate(n,N) log ‘nand’ gate, 2 or n inputs; N=negated input
NOR gate(n,N) log ‘nor’ gate, 2 or n inputs; N=negated input
NOT gate(linespec,N) log ‘not’ gate, 1 input or as a 2-terminal element, N=negated input
NXOR gate(n,N) log ‘nxor’ gate, 2 or n inputs; N=negated input
NOT circle log ‘not’ circle
N diam log diameter of ‘not’ circles
OR gate(n,N) log ‘or’ gate, 2 or n inputs; N=negated input
OR gen(n,chars,[wid,[ht]]) log general OR gate: n=number of inputs (0 ≤ n ≤ 16);

chars: B=base and straight sides; A=Arcs;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles;
[N]P=XOR arc; [N]O=output; C=center

Point (integer) gen sets direction cosines in degrees
Rect (radius,angle) gen (deg) polar-to-rectangular conversion
Sin(integer) gen sine function, integer degrees
XOR gate(n,N) log ‘xor’ gate, 2 or n inputs; N=negated input
above gen string position above relative to current direction
abs (number) gen absolute value function
amp(linespec,size) cct amplifier
antenna(at location, T, A|L|T|S|D|P|F, U|D|L|R|degrees)

cct antenna, without stem for nonblank 2nd arg; A=aerial,
L=loop, T=triangle, S=diamond, D=dipole, P=phased, F=fork;
up, down, left, right, or angle from horizontal (default -90)

arca(chord linespec, ccw|cw, radius, modifiers)
gen arc with acute angle (obtuse if radius is negative)

arcr(center,radius,start angle,end angle)

29

gen arc definition, e.g., arc(A,r,0,pi /2) cw ->
arcd(center,radius,start degrees,end degrees)

gen arc definition (see arcr), angles in degrees
arrowline(linespec) cct line (dotted, dashed permissible) with centred arrowhead
battery(linespec,n,R) cct n-cell battery: default 1 cell, R=reversed polarity
beginshade(gray value) gen begin gray shading, see shade

e.g., beginshade(.5); closed line specs; endshade
bell(U|D|L|R|degrees, size) cct bell, In1 to In3 defined
below gen string position relative to current direction
bi tr(linespec,L|R,P,E) cct left or right, N or P-type bipolar transistor, without

or with envelope
bi trans(linespec,L|R,chars,E) cct bipolar transistor core left or right; chars: BU=bulk line;

B=base line and label; uEn|dEn=emitters E0 to En; S=Schottky;
uE|dE=emitter line; C=collector line; G=gate line and location;
H=gate line; L=L-gate line and location; [d]D=named parallel diode;
d=dotted connection

boxcoord(planar obj,x fraction,y fraction)
gen internal point in a planar object

boxdim(name,h|w|d|v,default) gen evaluate, e.g. name w if defined, else default if given, else 0
v gives sum of d and h values

bp gen big-point-size factor, in scaled inches, (*scale/72)
buzzer(U|D|L|R|degrees, size)

cct buzzer, In1 to In3 defined
b current(label,pos,In|Out,Start|End,frac)

cct labelled branch-current arrow to frac between branch end and body
c fet(linespec,L|R,P) cct left or right, plain or negated pin simplified MOSFET
capacitor(linespec,C,R) cct capacitor, C=curved-plate, R=reversed polarity
clabel(label,label,label) cct centre triple label
contact(O|C,R) cct single-pole contact: default double pole or normally open or

closed, oriented to the left or right
consource(linespec,V|I) cct voltage or current controlled source
cosd(arg) gen cosine of an expression in degrees
cross(at location) gen plots a small cross
cross3D(x1,y1,z1,x2,y2,z2) 3D cross product of two triples
crossover(linespec, L|R, Line1, ...)

cct line jumping left or right over named lines
crosswd gen cross dimension
csdim cct controlled-source width
d fet(linespec,L|R,P,S,E) cct left or right, N or P depletion MOSFET, normal or simplified,

without or with envelope
dabove(at location) darrow above (displaced dlinewid/2)
darrow(linespec,t,t,width,arrowhd wd,arrowhd ht, <- or <-| or |)

darrow double arrow, truncated at beginning or end, specified sizes,
reversed arrowhead or closed stem

dashline(linespec,thickness|color|<->,dash len, gap len,G)
gen dashed line with dash at end (G ends with gap)

dbelow(at location) darrow below (displaced dlinewid/2)
dcosine3D(i,x,y,z) 3D extract i-th entry of triple x,y,z
delay(linespec,size) cct delay element
delay rad cct delay radius
dend(at location) darrow close (or start) double line
diff (a,b) gen difference function
diff3D(x1,y1,z1,x2,y2,z2) 3D difference of two triples
dimen cct size parameter for circuit elements
dimension (linespec,offset,label,D|H|W|blank width,tic offset,arrowhead)

30

gen macro for dimensioning diagrams; arrowhead=-> | <-
diode(linespec,B|D|L|LE[R]|P[R]|S|T|Z,[R][E])

cct diode: bi-directional, diac, Schottky, tunnel, zener, LED
(right), photodiode (right), open; R=reversed polarity,
E=enclosure.

direction (U|D|L|R|degrees, default)
gen sets current direction up, down, left, right, or angle in degrees.

dlabel(long,lat,label,label,label)
cct general triple label

dleft darrow double line left turn
dline(linespec,t,t,width, |-| or -| or |-)

darrow double line, truncated by half width at either end, closed
at either or both ends

dlinewid darrow width of double lines
dljust(at location) darrow ljust (displaced dlinewid/2)
dn gen sets down relative to current-direction
dot(at location,radius,fill) gen filled circle (third arg= gray value: 0=black, 1=white)
dot3D(x1,y1,z1,x2,y2,z2) 3D dot product of two triples
dotrad gen dot radius
down gen sets current direction to down
dright darrow double arrow right turn
drjust(at location) darrow rjust (displaced dlinewid/2)
dtee([L|R]) darrow double arrow tee junction with tail to left, right, or (default) back

along current direction
dtor gen degrees to radians conversion constant
e gen .e relative to current direction
e fet(linespec,L|R,P,S,E) cct left or right, N or P enhancement MOSFET, normal

or simplified, without or with envelope
earphone(U|D|L|R|degrees, size)

cct earphone, In1 to In3 defined
ebox(linespec,length,ht) cct two-terminal box element with adjustable dimensions
eleminit (linespec) cct internal line initialization
elen cct default element length
em arrows([N|I|E][D],angle,length)

cct radiation arrows N=nonionizing, I=ionizing, E=simple; D=dot
endshade gen end gray shading, see beginshade
expe gen exponential, base e
fill (number) gen fill macro, 0=black, 1=white
for (start,end,increment,‘actions’)

gen integer for loop with index variable m4x
fuse cct fuse symbol
gap(linespec,fill,A) cct gap with (filled) dots, A=chopped arrow between dots
glabel cct internal general labeller
gpar (element,element,separation)

cct two same-direction elements in parallel
gpic gpic defined to signify gpic is being used
grid (x,y) log absolute grid location
ground(at location, T, N|F|S|L|P|E, U|D|L|R|degrees)

cct ground, without stem for nonblank 2nd arg; N=normal,
F=frame, S=signal, L=low-noise, P=protective, E=European;
up, down, left, right, or angle from horizontal (default -90)

hop(L|R,at location) cct conductor crossing another to left or right
hoprad cct hop radius
ht gen height relative to current direction
igbt(linespec,L|R,[L][[d]D]) cct left or right IGBT, L=alternate gate type, D=parallel diode,

31

dD=dotted connections
inductor(linespec,W,n,M) cct inductor, narrow or wide, 4 or n arcs, without or with

magnetic core
integrator(linespec,size) cct integrating amplifier
intersect (line1.start,line1.end,line2.start,line2.end)

gen intersection of two lines
j fet(linespec,L|R,P,E) cct left or right, N or P JFET, without or with envelope
larrow(label,->|<-,dist) cct arrow dist to left of last-drawn 2-terminal element
left gen left with respect to current direction
length3D(x,y,z) 3D Euclidean length of triple x,y,z
lg pin(location, logical name, pin label, n|e|s|w[N|L|M][E], pinno, optlen)

log comprehensive logic pin; n|e|s|w=direction, N=negated,
L=active low out, M=active low in, E=edge trigger’

linethick (number) gen set line thickness in points
lin leng(line-reference) gen calculate the length of a line
ljust gen ljust with respect to current direction
llabel(label,label,label) cct triple lable on left side of the element
loc (x, y) gen location adjusted for current direction
log10E gen constant log10(e)
loge gen logarithm, base e
lt gen left with respect to current direction
manhattan gen sets direction cosines for left, right, up, down
mfpic mfpic defined to signify mfpic is being used
microphone(U|D|L|R|degrees, size)

cct microphone, In1 to In3 defined
mosfet(linespec,L|R,chars,E) cct MOSFET left or right, included components defined by

characters, envelope
m4lstring(arg1,arg2) gen expand arg1 if it begins with sprintf or ", otherwise arg2
m4 arrow(linespec,ht,wid) gen arrow with adjustable head, filled when possible
m4xtract(‘string1’,string2) gen delete string2 from string1, return 1 if present
n gen .n with respect to current direction
ne gen .ne with respect to current direction
neg gen unary negation
nport(box spec,nw,nn,ne,ns,space ratio,pin lgth,style)

cct nport macro (default 2-port)
nw gen .nw with respect to current direction
opamp(linespec,label,label,size,[P][R])

cct operational amplifier with −, + or other internal labels,
specified size. P adds power connections, R swaps In1, In2 labels

open arrow(linespec,ht,wid) gen arrow with adjustable open head
par (element,element,separation) cct two same-direction, same-length elements in parallel
point (angle) gen (radians) set direction cosines
polar (x,y) gen rectangular-to polar conversion
potentiometer(linespec,cycles,fractional pos,length,· · ·)

cct resistor with taps T1, T2, . . . with specified fractional
positions and lengths (possibly neg)

print3D(x,y,z) 3D write out triple for debugging
prod (a,b) gen binary multiplication
project(x,(y,(z) 3D 3D to 2D projection
psset (PSTricks settings) gen set PSTricks parameters
pstricks pstricks defined to signify PSTricks is being used
pt gen TEX point-size factor, in scaled inches, (*scale/72.27)
rarrow(label,->|<-,dist) cct arrow dist to right of last-drawn 2-terminal element
rect (radius,angle) gen (radians) polar-rectangular conversion
relay(n,O|C,R) cct relay: n poles (default 1), default double throw or normally open

32

or closed, drawn left or right of current direction
resistor(linespec,n|E) cct resistor, n peaks, default 3, or E for ebox
reversed(‘macro name’,args) cct reverse polarity of 2-terminal element
right gen set current direction right
rjust gen right justify with respect to current direction
rlabel(label,label,label) cct triple lable on right side of the element
rot3Dx(radians,x,y,z) 3D rotates x,y,z about x axis
rot3Dy(radians,x,y,z) 3D rotates x,y,z about y axis
rot3Dz(radians,x,y,z) 3D rotates x,y,z about z axis
rpoint (linespec) gen set direction cosines
rpos (position) gen Here + position
rt gen right with respect to current direction
rtod gen constant, degrees/radian
rvec (x,y) gen location relative to current direction
s gen .s with respect to current direction
s box(text,expr1,· · ·) gen generate dimensioned text string using \boxdims from

boxdims.sty. Two or more args are passed to sprintf().
s dp(name,default) gen depth of the most recent (or named) s box
s ht(name,default) gen height of the most recent (or named) s box
s init(name) gen initialize s box string label to name which should be unique
s wd(name,default) gen width of the most recent (or named) s box
scr(linespec,R,G,E) cct triac (scr), right, gated, envelope
se gen .se with respect to current direction
setview(azimuth degrees,elevation degrees)

3D set projection viewpoint
sfg init(default line len, node rad, arrowhd len, arrowhd wid)

cct initialization of signal flow graph macros
sfgabove cct like above but with extra space
sfgbelow cct like below but with extra space
sfgarc(linespec,text,text justification,cw|ccw,height scale factor)

cct directed arc drawn between nodes, with text label and a
height-adjustment parameter

sfgline(linespec,text,text justification)
cct directed straight line chopped by node radius, with text label

sfgnode(at location,text,above|below)
cct white small circle, with text label

sfgself(at location, U|D|L|R|degrees, text, text justification, cw|ccw, scale factor)
cct self-loop drawn at angle angle from a node, with text label and a

size-adjustment parameter
shade(gray value,closed line specs)

gen fill arbitrary closed curve
shadebox(box specification) gen box with edge shading
sign (number) gen sign function
sind(arg) gen sine of an expression in degrees
source(linespec,V|v|I|i|AC|X|string,diameter)

cct source, blank or voltage (2 types) or current (2 types) or AC
or X or labelled

sourcerad cct default source radius
sprod3D(a,x,y,z) 3D scalar product of triple x,y,z by a
sp gen evaluates to medium space for gpic strings
speaker(U|D|L|R|degrees, size)

cct speaker, In1 to In7 defined
sum (a,b) gen binary sum
sum3D(x1,y1,z1,x2,y2,z2) 3D sum of two triples
svec (x,y) log scaled and rotated grid coordinate vector

33

sw gen .sw with respect to current direction
switch(linespec,L|R,C|O,B) cct SPST switch left or right, blank or closing or opening arrow,

or button
thicklines (number) gen set line thickness in points
thinlines (number) gen set line thickness in points
tline(linespec,wid,ht) cct transmission line, manhattan direction
transformer(linespec,L|R,np,A,ns)

cct 2-winding transformer: left or right, np primary arcs,
air core, ns secondary arcs

twopi gen 2π
ujt(linespec,R,P,E) cct unijunction transistor, right, P-channel, envelope
unit3D(x,y,z) 3D unit triple in the direction of triple x,y,z
up gen set current direction up
up gen up with respect to current direction
variable(‘element’,[A|P|L|[u]N][C|S],angle,length)

cct overlaid arrow or line to indicate variable 2-terminal element:
A=arrow, P=preset, L=linear, N=nonlinear, C=continuous, S=setpwise

vec (x,y) gen position rotated with respect to current direction
vrot (x,y,xcosine,ycosine) gen rotation operator
vlength(x,y) gen vector length

√
x2 + y2

vscal (number,x,y) gen vector scale operator
w gen .w with respect to current direction
wid gen width with respect to current direction
xtal(linespec) cct quartz crystal

References

[1] J. Bentley. More Programming Pearls. Addison-Wesley, Reading, Massachusetts, 1988.

[2] A. R. Clark. Using circuit macros, 1999. Courtesy of Alan Robert Clark at
http://ytdp.ee.wits.ac.za/cct.html.

[3] The Free Software Foundation. Gpic man page, 1992.

[4] M. Goossens, S. Rahtz, and F. Mittelbach. The LATEXGraphics Companion. Addison-Wesley,
Reading, Massachusetts, 1997.

[5] J. D. Hobby. A user’s manual for MetaPost, 1990.

[6] IEEE. Graphic symbols for electrical and electronic diagrams, 1975. Std 315-1975, 315A-1986,
reaffirmed 1993.

[7] B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell Labora-
tories, 1977.

[8] B. W. Kernighan and D. M. Richie. PIC—A graphics language for typesetting, user manual.
Technical Report 116, AT&T Bell Laboratories, 1991.

[9] Thomas K. Landauer. The Trouble with Computers. MIT Press, Cambridge, 1995.

[10] E. S. Raymond. Making pictures with GNU PIC, 1995. In GNU groff source distribution.

[11] T. Rokicki. DVIPS: A TEX driver. Technical report, Stanford, 1994.

[12] A. S. Sedra and K. C. Smith. Microelectronic Circuits. Oxford University Press, Oxford, 1997.

[13] R. Seindal. GNU m4, version 1.4, 1994. http://www.gnu.org/manual/m4-1.4/html mono/m4.html.

[14] T. Van Zandt. PSTricks user’s guide, 1993.

34

